skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Mingming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We propose a sparse deep ReLU network (SDRN) estimator of the regression function obtained from regularized empirical risk minimization with a Lipschitz loss function. Our framework can be applied to a variety of regression and classification problems. We establish novel nonasymptotic excess risk bounds for our SDRN estimator when the regression function belongs to a Sobolev space with mixed derivatives. We obtain a new, nearly optimal, risk rate in the sense that the SDRN estimator can achieve nearly the same optimal minimax convergence rate as one-dimensional nonparametric regression with the dimension involved in a logarithm term only when the feature dimension is fixed. The estimator has a slightly slower rate when the dimension grows with the sample size. We show that the depth of the SDRN estimator grows with the sample size in logarithmic order, and the total number of nodes and weights grows in polynomial order of the sample size to have the nearly optimal risk rate. The proposed SDRN can go deeper with fewer parameters to well estimate the regression and overcome the overfitting problem encountered by conventional feedforward neural networks. 
    more » « less
    Free, publicly-accessible full text available March 18, 2026
  2. Abstract Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have a priori knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on a priori knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study. 
    more » « less